If it's not what You are looking for type in the equation solver your own equation and let us solve it.
a^2/3=16
We move all terms to the left:
a^2/3-(16)=0
We multiply all the terms by the denominator
a^2-16*3=0
We add all the numbers together, and all the variables
a^2-48=0
a = 1; b = 0; c = -48;
Δ = b2-4ac
Δ = 02-4·1·(-48)
Δ = 192
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{192}=\sqrt{64*3}=\sqrt{64}*\sqrt{3}=8\sqrt{3}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{3}}{2*1}=\frac{0-8\sqrt{3}}{2} =-\frac{8\sqrt{3}}{2} =-4\sqrt{3} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{3}}{2*1}=\frac{0+8\sqrt{3}}{2} =\frac{8\sqrt{3}}{2} =4\sqrt{3} $
| x=2x+132 | | 3x+5=-2X=-2 | | x=132+2x | | 3t-16=4t-13 | | 17^-5x+2=83 | | 6x+61=138 | | 72=5y | | 3x=9x-7 | | 6x+61=187 | | 3(9y-7)=7y+1 | | 1.2(x-4)=4x-3.4 | | y/2^2=36 | | y/2^=36 | | 3x+20+5x-4=90 | | 48-x=9x-30 | | 51x-34^2=0 | | 1.2(x=4)=4x-3.4 | | -5(6x-3=) | | 64.94+23.53y(0.003731-y)=100-17.54y(1+y) | | 5p=8p-8 | | 1.2x-4.8=4x-3.4 | | 68.97+22.47y(0.004388-y)=100-14.71y(1+y) | | x-8=x-5 | | 2x-43x-6=5x-2 | | 2x+1+4x-3=6x+1 | | 74.63+20y(0.005829-y)=100-11.49y(1+y) | | 8(-7z+6=) | | (m−46)÷4=8 | | 5(r+3)=95 | | 3p-15+2p-14=p-11 | | 51x=34x^2 | | 71.94+20.41y(0.00504-y)=100-13.51y(1+y) |